All these results were obtained thanks to the HPC facilities of and the following founders
RESEARCH
Iamareinterestedinthemulti-scalemodelingandmoleculardynamics(MD)simulationsofbiophysicalprocesses.Formyresearch,I developanduseatomisticandcoarse-grainingMDforstudyingproteinstabilityandfunctionindifferentenvironmentssuchasin phospholipidmembranesorindirectorinvertedmicelles.Ialsousequantummechanical(QM)approachestodevelopforcefield parametersforbiomolecules(e.g.detergents)widelyusedinexperimentsinthefieldofmembraneprotein(MP).Abriefdescriptionof mycurrentresearchinterestsisgivenbelowandthepaperspublishedfromtheseresearchtopicsarelistedinthepublicationsectionof this website.
Reverse micelle systems
Reversemicelles(RM)arestable,isotropic,watermicroemulsionssuspendedinorganic solvents(suchasalkanes,scCO2).Theywereoriginallyemployedsincedecadesfor instance,withterahertzorNMR,spectroscopytechniquesorMDtoexaminethestructure anddynamicsofthewaterandbiomoleculesinaconfinedenvironmentmimickingthe cellularinterior.RMshaveagreatinterestsincetheyarecapabletosolubilizevarious biomolecules(suchasproteins,poymers,sugars,etc.)insidetheirwaterpools.However, thesolubilizationornotofbiomoleculesdependssignificantlyonamultitudeof parameterssuchasthechemicalnatureofthesurfactant,theuseofcosurfactantsorthe watercontentinsidetheRMwaterpoolandremainpoorlyunderstood,sofar.To examinethisaspectindetails,weuseatomisticMDandexperimentalapproaches(e.g. time-domainTHzspectroscopy,SAXS)toexaminedifferentparametersoftheRMand confinedwateroropertiesthatmayinfluencetheirsolubilizationcapabilitiessuchasthe staticanddynamicalcharacteristicsoftheconfinedwater,theirstructuralchangeswith confinedpeptides,globularproteins(cytochromeC)andmorerecentlywithmembrane protein (gramicidin A channel).Theseresearchesweremade,inpart,incollaborationwithDr.D.LaageatENSParisand Dr. T. Elsaesser, at U. Berlin.
Surfactant systems
Detergents(orsurfactants)playanessentialroleinthemembraneprotein(MP)studies; theiramphiphilicnatureallowsthemtointeractwiththehydrophobicregionofMPsto keepthemwater-solubleoutsideoftheirnativebilayerenvironment.Unfortunately, solubilitydoesnotalways“translate”tonativestructureandstability;adetergentthatis usefulforextractionmaynotbecompatiblewithpurificationand/orbiochemicalstudies. Furthermore,adetergentworkingononemembraneproteinmaynotbesuitablefora differentone.Indeed,detergentsareoftenqualitativelydescribedas‘harsh“(e.g.,SDS, DPC)and“mild“(e.g.,DDMandOG)basedupontheirrelativepropensitytodenature proteinsbyinteractingwithnon-membranousregionsofproteins.Propertiesof detergentsthatrenderthemdenaturingincludeheadgroupcharge(achargedhead groupismoredenaturingthanazwitterioniconewhich,inturn,ismoredenaturingthan aneutralone),aswellasacyltaillength(ashorterchainismoredenaturingthanalonger one).Therefore,thereisnotasetof“goldenrules”fortheuseofdetergentsforMP applications.Understandingthephysical-chemicalpropertiesassociatedwithdifferent classesofdetergentsisthuscrucialforchoosingwhichdetergentmayworkbestfora particularapplication.Inthisresearch,weuselargescaleatomisticandcoarse-grained MDsimulationscombinedwithbiophysicalexperimentssuchasscatteringexperiments (e.g.SAXS,SANS)andfluorescencespectroscopytostudystructuralanddynamical propertiesofvarioustypesofmicelleswithe.g.bDDM,LDAO,DPC,SDSorTX100with oftennewlydeveloppedparametersandpeptides,membraneproteinsaswellaswith organic pollutants such as PAHs in the context of surfactant ehanced remediation.Theseresearchesweremade,inpart,incollaborationwithDr.FrançoisYvesDupradeau U.ofAmiens,France,Dr.FrançoiseBonneté,IBPC,ParisorthegroupofPr.ZhiDangat the South China University of Technology, Guanzhou, China
Membrane-protein systems
Membraneproteins(MPs)playmajorrolesinlivingorganismsandparticipateto exchangesandcommunicationsbetweencellsandtheirimmediateenvironmentas receptors,transporters,ionchannels,etc.MPsarealsoinvolvedinalargenumberof pathologies(e.g.influenza,HIV…)andgeneticdiseases(e.g.cysticfibrosis)andtheirefore theirphysiologicalandbiomedicalrelevancemakesthemmajortargetsforalargepartof thepharmaceuticalmoleculesindevelopment.Despitetheirimportance,the3D structuresatatomiclevelofMPsrepresentbarely2%ofbiologicalmacromolecular structuresintheProteinDataBank.Thisdeficitisduetodifficultiesinthepreparationof suitablesamplesforstructuralstudiesbyNMR,cryo-EMorcrystallography.Indeed,these structuraltechniquesrequiretheuseofmembrane-mimeticenvironments,suchas detergents,amphipathicpolymersornanodiscs,toextractproteinsfromtheirnative lipidicenvironmentsandtokeepthemstable,functionalandmonodisperse.Forinstance, inthecaseofcrystallography,growingwell-ordereddiffractingcrystalsdirectlyfrom detergentsolutionsremainsthemostlargelyusedmethod,becauseofitseaseof implementationsimilartosolubleproteins(vapordiffusion,batch,dialysis).However,this crystallizationmethodisverydependentonthenatureofthedetergentusedandthus remainnowadayschallenginginparticularforchoosingthegooddetergent.Inthis context,weuselargescaleMDsimulationscombinedwithexperimentalapproaches (SAXS,SANS,SEC-MALLS)togaininsightsintohowtheselecteddetergentbuoymimicthe naturalmembraneandinfluenceMPpropertiesisessential.Recentresultswereobtained forlargeMPssuchasthelightharvestingcomplextype2fromapurplebacteriaRps. acidophila or with the TonB MP protein (ShuA) from Shigella dysenteriae. Theseactivitiesofresearchisdone,inpart,incollaborationwithDr.FrançoiseBonneté, IBPC, Paris
ModelsoftheMPShuAinsertedinDDM micelleswithvariousnumbersofsurfactantsor in a gram-negative bacteria outer membrane.
Developments of force fields for biomoleculesMostoftheempiricalforcefieldsusedinclassicalMDsimulationsusethefixed-charge modelwhencomputingelectrostaticforcesandenergies.Inthisapproach,asinglevalue fortheatomicchargeisassignedtoeachatomindependentlyoftheelectrostatic environment.Atomicpartialchargesarederivedandvalidatedbyusingboth experimentaldataandQMcalculationsandeach force field provides its own set of atomic charges for standard residues or other biolecules (e.g. nucleaic acids, surfactant, etc.) in its specific format. The“problem”oftheatomicpartialchargesisthattheyarenot observables as is an electron density and that there are no standard criteria to evaluate the quality of them. It has been required that the charges should be independent of the computational methods, QM basis-sets, conformations of the molecule and should be transferable and conform to the atom electronegativity. There exist several different methods for deriving partial charges such as Mulliken, Löwdin population analysis or empirical approaches to reproduce crystallographicor liquid data (e.g., liquid data, or crystal properties),theelectrostaticpotential(ESP)derivedchargesusingsemi-empiricalorab-initiomethodsandtheAM1-BCCapproach.Unfortunately,noneofthechargemodelshas provedtobethebestinallrespects.ForinstanceincaseoftheESPchargesarenoteasily transferablebetweencommongroupsofhomologousmoleculesanddepends significantlyonmolecularorientationandconformation.IncollaborationwithDrFrançois Dupradeau(UnversitéofAmiens,France),weusedthe“buildingblocks”approach implementedintheREDserver(https://upjv.q4md-forcefieldtools.org/REDServer-Development/)whereacomplexmolecule(i.e.withdifferentchemicalgroups)issplitinto differentelementarychemicalfragmentswithwell-definedandcontrolledconformations. ThisapproachhasmanyadvantagesoverthewholemoleculeapproachtoderiveRESP charges:(i)thecomputationaltimerequiredforgeometryoptimizationandmolecular electrostaticpotential(MEP)computationisdrasticallyreduced,(ii)theoptimized geometryoftheconformation(s)ofeachmolecularfragmentisfullydefinedand controlled,(iii)optimizedconformationspresentingintramolecularhydrogenbondsare discardedfromchargederivationtoavoidover-polarizationeffects,andfinally(iv)alarge setofanalogmoleculescanbesimultaneouslyinvolvedinchargederivationleadingtoa homogeneousForceFieldTopologyDataBase(FFTopDB).Thisapproachwassuccessfully usedtoobtainRESPatomicpartialchargesforvariousbiomoleculesusedinmyMD simulationworksincludingglucosepolymers,photosyntheticpigments,modifiedamino-acids,andvarioustypesofsurfactantfullycompatiblewiththeAmberforcefieldsfor proteins and sugars.
ModelsofapureLDAOmicellesandafragment of the lipid kinase PIK4A (DI)
ModelsofaggregationprocessoftwoAOTRMs in isooctane with W0=5
Glycolipid based membrane systems
Bio-glycolipidspreparedfromthemodifiedstrainS.bombicolaΔugtB1commonlycalled glucolipids(GL)presentseveralinterestingpropertiesthatcanbeusefulforthe developmentofseveraltypesofmaterialssuchas:hydrogels,vesicles,ultra-resistant foams,developmentofbiocidalsurfaces,stabilizersofnanoparticlesforapplicationsin thebiomedicalfield,etc...Acidicglucolipid,characterizedbyaCOOHgroupandaβ-glucoseunit,oppositeeachothershowastonishingproperties:thespontaneous formationofinterdigitatedlipidmembraneswhosechargeisvariableaccordingtothepH. IthasalsobeenshownthatthenatureoftheCOOHgroupplaysaveryimportantrole,in particularforthecontributionofanegativechargewhichhastheroleofsofteningthe elasticpropertiesofthemembrane.TheeffectsofthepHandionsonthese characteristicsarenotwellunderstand,sofar.Togaininsightsintotheseaspectsandin particulartheirmechanicalproperties,MDsimulationsareusedwithvariousneutron scatterings approaches. TheseactivitiesofresearchisdoneincollaborationwithDr.NikiBaccile,Laboratoirede Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS et Collège de France