Laboratoire Imagerie Paramétrique CNRS UMR7623 Paris, France. Molecular Simulations Study of the C₁₂E₄ Reverse Micelles changes with the Temperature and Pressure. Stéphane Abel ^{1,2}, Massimo Marchi², Marcel Waks¹, Wladimir Urbach³. **Contact :**

stephane.abel@lip.bhdc.jussieu.fr

¹Laboratoire d'Imagerie Paramétrique, UMR 7623 CNRS., Paris, France,

²Commissariat à l'Energie Atomique, DSV-SBFM-DBJC Centre d'Etudes, Saclay, Gif-sur-Yvette, France,

³Laboratoire de Physique Statistique, CNRS UMR8550 Ecole Normale Superieure, Paris.

Introduction

Poly(oxyethylene) glycols of the family C_iE_i can form a various mesophases depending the experimental conditions (such as concentration of the surfactant, the temperature, the hydrophile-lipophile balance etc...). In high concentration of non polar solvent (i.e. <75 % w/w), C_iE_i forms stable reverse micelle (RM). A key structural parameter is the ratio W_o=[H₂O]/[Surf] which determines the micellar properties (such as size, entrapped) water properties or polar group hydration.).

Experimental [1] and theoretical [2] studies indicate that the size, the shape and the hydration of surfactant (namely the number of water par EO unit) can be modulate with the temperature and the pressure and depend, in part, of surfactant conformation and the water core structure.

 $C_{12}E_4$ [(CH₃)-(CH2)₁₀-(CH₂-O-CH₂)₄-CH₂-OH] is a class of non-ionic surfactant molecule whose the polar headgroup (EOh) can fold in α helix in water [3]. The ratio between the hydrophilic and the hydrophobic regions is close to 1. Experimentally its aggregation number for $W_0=3$, is around 94 and the micellar structure was estimated to be spherical at 8° and become an ellipsoid at 25° [4].

final The pictures the show configurations (T=10ns) of (RM94a (a)) RM94b (b)) P=0.1MPa. In RM94a, the water is trapped by the hydrophilic head of the surfactant, whereas in RM94b, the water forms a water cluster in the core of the the micelles with the micelle, surrounded by the EOh. This temperature and the pressure. particular location of the

We present, here, a compared MD study of two types of RM in decane with the C₁₂E₄ Ethylene-Oxide heads (EOh) in different conformations (i.e. all-trans (RM94a) and in helix conformation (i.e. gauche: RM94b)).

We have evaluated by MD (10 ns each), the temperature and the pressure impact on the structure and hydration of the micelles depending the conformation of their surfactant headgroup. The RM were simulated at two temperatures (T=8°C and 25°C) and pressures (P=0.1 MPa and 200 MPa) with the ORAC MD package [3].

(a) 8°C (a) 25°C (b) 8°C (b) 25°C

water modify the reaction of

On the figures, we present the averaged radial profiles for RM94a and RM94b. EO₁₋₄ gives the EO position along the surfactant chain. ALC is the hydroxyl group of the head. As we can see, the water (black) in RM94a are mainly trapped in the hydrophilic region of the surfactant in contrast with RM94b. This will suggest a different response of this RM with the T and P.

RM94 (a) 8°C (a) 25°C (b) 8°C (b) 25°C

RM94a	T=25°C P=0.1MPa	a/c	ecc	R _g (Å)	R _g ^{hc}	R ^M	A _s /Head (Å ²)
	Micelle (M)	1.24±0.01	0.56±0.01	Sim. (a)	17.73±0.32	21.65±0.17	42.05±1.53
	Water Core (W)	1.33±0.08	0.64±0.06	Sim. (b)	17.54±0.31	20.05±0.07	41.12±0.37
L				Exp. [1]	19.93±1.00	25±1.0	52.94 ± 1.0
	T=25°C P=0.1MPa a/c ecc		These tables present the averaged shape and size parameters for the micelles. The superscript M and hc give the radius of gyration of the entire				
RM94b	Simulated (M)	1.19±0.02	0.54±0.04	micelles, the aqueous core respectively. The eccentricity indicates the extent deviation of the RM from an ideal sphere (i.e. ecc=0). a/c gives the average ratio between the major, a, and c, he minor semiaxes. The average surface per $C_{12}E_4$ was obtained with the expression: As= $4\pi(R_g^{hc})^2/94$ assuming a spherical shape for the micelles usually found in the literature.			
	Water Core (W)	1.56±0.15	0.76±0.04				
RM94 (a) 8°C (a) 25°C (b) 8°C (b) 25°C — Effect of the Temperature							

(a/c) ^M	+0.02 s	+0.02 s
(a/c) ^w	+0.08 s	+0.05 s
(R _g) ^M	+0.03 ^{ns}	+0.00 s
(R _g) ^{pc}	+0.06 s	-0.06 ^{ns}
A _s /Head (Å ²)	+1.47 s	+0.03 ^{ns}
Surf ^M (Ų)	+1567 ^s	+464 ^s

Structural changes of the micelles with the temperature. When T increase the two micelles become less spherical (especially for their water cores) with an increase of their polar cores. A significant augmentation of the surface in contact of the surfactant head with micellar water (As/Head) for RM94a. With the temperature the ASA contact with the oil (80% due of the C₁₂ tail and water less than 1% and computed with Voronoï polyhedra also increase. Note s means significant, ns: no significant.

RM94	0.1MPa	200MPa	0.1MPa	200MPa
	ΔP		Δ^{P}	
(a/c) ^M	+0.02 s		+0.01 ^s	
(a/c) ^w	-0.03 ns		+0.03 s	
(R _g) ^M	-0.11 s		-0.10 s	
(R _a) ^{pc}	-0.11 s		-0.	15 ^s

On the figure, we show the averaged normalized dihedral populations, $P(\phi)$, for the OCECEO angles of the $C_{12}E_4$ headgroup. $P(\phi)$ were not significantly modified with the T and P. We also observe that the number of transitions T->G for these angles increase with their proximity of the water core. For the angles far from the core the and the O_h group. With P (not shown), we observe, in opposite, an increase initial conformations remains. This discrepancy with others simulations can be explained by the low hydration of this region for this size of micelle. For the last torsion, we observe a gauche⁺⁻ conformation (stabilized by water H-bonds) in core. Note s means significant, ns: no significant. agreement with others MDs of these class of surfactant in others phases (L₁ or L_{α}).

_	mpact of	the Pres	ssure		
RM94	Vol (ų)/Mol				
	0.1MPa	200MPa	ΔV	K ²⁰⁰ 0.1 %	
Total	606816.5	533314	73502.5	12.1	
Decane	334	289.5	44.5	13.3	
Micelle	71685.5	67059.5	4626.0	6.4	
C ₁₂ E ₄	671.5	622.0	49.5	7.4	
C ₁₂	361.5	324.5	37.0	10.2	
EO ₁₋₄	281.5	271.5	10.0	3.5	
ALC	27.5	26.3	1.2	4.3	
H ₂ O	30.3	28.4	1.9	6.2	
Bulk H ₂ O	30.4	28.0	2.4	7.90	

	Δ^{T}_{hyd}	Δ^{T}_{hyd}
O ₁ -O _w	-0.05 ^{ns}	-0.12 s
O ₂ - O _w	-0.02 ^{ns}	-0.21 s
O ₃ - O _w	-0.02 ^{ns}	-0.23 s
O ₄ - O _w	-0.04 s	-0.20 s
O _h -O _w	-0.07 s	-0.08 s

The surfactant EOh hydration with the T computed with the pdf $O_n - O_w$. First, we have found that for each T the number of water in the first shell of the EO oxygen atom increase linearly as the function the distance to core: 0.4 to 1.4 for O_1 and respectively. We found that for RM94a occurs only for O_4 and O_h atoms. Whereas for RM94b, the dehydration is significant for all the EO units of the number of water per EO and the hydroxyl group (close to 10% and 25% respectively), related once again with their accessibility to the water

Our MD indicates that low water

Conclusion

content small RM decreases significantly the response of aggregates and C12E4 to P and T-

- For the RM with the EOh in gauche conformation, the dehydration occurs for all the oxygen atoms, in contrast to the all-trans micelle.

- We observe a small number of transitions T->G of the

A _s /Head (Å ²)	-0.49 s	-0.68 s
Surf ^M (Å ²)	-599 s	-216 ^{ns}

Structural changes of the micelles with the pressure. When the pressure increase, the micelles become more flattened and we observe a small reduction of their radii. The effect of the high pressure on the micelles is more marked for RM94b than for RM94a due again to their different structure. Note s means significant, ns: no significant.

Methodology Notes

•We used CHARMM and Tasaky force field [4] to model the $C_{12}E_4$, the decane, the water (SPC).

•The systems were setting up to be located in L_2 region of phase diagram of $C_{12}E_4$ /Water/decane (i.e. with an oil weight fraction (> 85%)) according [1] for a total of ~60000 atoms each.

•We used SPME for electrostatic (10 Å cutoff) with PBC [3].

•An 12 fs time step was used for the equation of motions with a r-RESPA [3]. The trajectories were saved every 240 fs for analysis for a simulation time of 10ns.

The average molecular volumes for the two micelles, the fluctuations and the corresponding compression ($K^{200}_{0,1} = (V_{0,1} - V_{200})/V_{0,1}$) for the solvent, micelles, surfactant regions and the micellar water reflect the different compressibility regions for the aggregate. A comparison with the pure SPC bulk water is made.

Eph dihedral angles. related to their positions to the water core independently the increase of T and P.

- When P increases, we observe a small reduction of the RM and water core radii and the EOh hydration increases. The computation of the volumes of some micelles regions indicates that the micelles present different compartments with different compressibility/rigidity: C_{12} >ALC $\geq E_4$) and $C_1E_4 > H_2O$.

- Is our datas can be generalized for bigger RM? For response, we plan to use coarse grain model of surfactant or simulate in implicit solvent to increase the size of the system and reduce the computational cost.

[1] Vasilescu *et al, Langmuir 1996,* 8, 2893 [2] Sterpone et al Langmuir 2004, 20, 43111996, 118, 8459 [3] Procacci et al, J. Comp. Chem. 1997, 18, 1848 [4] Tasaky, K J. Am. Chem Society

